L'horloge du républicain

Page 3 sur 3 Précédent  1, 2, 3

Voir le sujet précédent Voir le sujet suivant Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Jeu 1 Jan 2015 - 22:43

cinquième et dernier concept toujours issus du deuxième axiome:le concept de la totalité
après cela on passera au troisième axiome

notation Ø pour désigner l'ensemble vide

le théorême de la totalité

ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles

rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E  est un ensemble et si E s'appartiens à lui même alors E "in" E

cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir

il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles

les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E

on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E

en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E

or si E est de type  E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K

si E est de type  E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par Aldo le Jeu 1 Jan 2015 - 22:44

Je réitère que c'est casse-bonbon ces signes mathématiques, en tous cas pour dire des choses simples. Ça embrouille franchement la démonstration quand on n'en est pas familier (tu peux pas éviter ?)

Ceci dit, rien à dire sur le concept d'inclusion, très simple toujours.
Rien à dire non plus sur le fait que (A inclus dans B ET B inclus dans A) => A = B (et l'équivalence).

... sauf qu'il n'est pas si clair de dire au départ qu'on ne sait pas la tronche qu'auront les éléments d'un ensemble (et de poser en axiome qu'ils seraient eux-même des ensembles), et d'arriver ensuite à définir en quoi, appartenant au départ par définition à l'ensemble A, ils seraient susceptibles d'appartenir à l'arrivée à un autre ensemble B... sans poser d'avance que B = A.

Bon, disons que tu poses l'ensemble des chats comme premier ensemble.
Tu peux dire par exemple que tous les chats sont des mammifères et donc que l'ensemble {chats} est inclus dans l'ensemble {mammifère} :  ok, c'est l'inclusion.

Mais admettons (par commodité) que seuls les chats miaulent.
Si tu cherches une équivalence, tu vas dire que tous les chats miaulent et que tous les miauleurs sont des chats... et (si j'ai bien compris) en déduire que l'ensemble {chats} = l'ensemble {miauleurs}.
... mais alors en constatant l'égalité chats = miauleurs, tu amputes le chat de tout un tas d'autres prédicats. Donc chats => miauleurs, mais miauleurs n'implique pas chats...


Complémentarité (je lis au fur et à mesure) : a priori, pas de problème.

_________________
Jimi Hendrix is God, et Deleuze est son prophète

Aldo
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 985
Date d'inscription : 26/09/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Jeu 1 Jan 2015 - 22:52

Aldo a écrit:Je réitère que c'est casse-bonbon ces signes mathématiques, en tous cas pour dire des choses simples.

puisque c'est simple et évident et donc tu le sait alors pourquoi me pose tu la question

Aldo a écrit:
C'est quoi, un "infini actuel" ?

je te signale qu'on en ai encore au deuxième axiome et que la question est abordée au sixième axiome

tu sait si c'est casse bonbon j'y suis pour rien ...faut dire ça à Zermelo

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par Aldo le Jeu 1 Jan 2015 - 23:03

Je te demande simplement d'écrire les choses sans signes mathématiques (écrire "quel que soit" au lieu de "forall", etc)

_________________
Jimi Hendrix is God, et Deleuze est son prophète

Aldo
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 985
Date d'inscription : 26/09/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Jeu 1 Jan 2015 - 23:13

ça facilite la lecture Aldo

si je dois faire des phases non mathématisées non seulement elles risques d'êtres ambigue (le langage des maths est un langage mille fois plus sûr que tout autre langage humain -même plus que l'hébreu biblique et qui pourtant est celui de ... -) mais en plus ce sera beaucoup plus long à écrire

comme en même temps je te donne le lexique, évidement sans LATEX je suis obligé de te donner un lexique
sinon c'est sûr que là pour le coup se sera illisible

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Jeu 1 Jan 2015 - 23:19

...oui je disais :
le langage des maths est un langage mille fois plus sûr que tout autre langage humain -même plus que l'hébreu biblique et qui pourtant est celui de

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Jeu 1 Jan 2015 - 23:29

alors le troisième axiome là c'est rapide

troisième axiome:axiome de la paire

Si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme unique éléments : A et B

on le note {A,B}

par le théorême de l'unicité alors si de plus A=B on obtiens comme nouvel ensemble l'ensemble {A}

mais attention ici A "neq" {A} ce ne sont pas du tout les mêmes ensembles


Dernière édition par saphiraméthyste le Jeu 1 Jan 2015 - 23:46, édité 1 fois

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par Aldo le Jeu 1 Jan 2015 - 23:35

saphiraméthyste a écrit:si je dois faire des phases non mathématisées non seulement elles risques d'êtres ambigue (le langage des maths est un langage mille fois plus sûr que tout autre langage humain -même plus que l'hébreu biblique et qui pourtant est celui de ...  -) mais en plus ce sera beaucoup plus long à écrire
Plus long à écrire, sûrement, mais ambigu faut voir (je me souviens pas trop mal de ces histoires d'ensembles du temps du lycée).
Enfin bon, peu importe, fais comme tu peux... mais je décrocherai si c'est trop long. Je regarderai par contre si ça réponds (le sixième axiome) à mes questions : ça m'intéresse, ce truc des ensembles (et puis c'est amusant).

_________________
Jimi Hendrix is God, et Deleuze est son prophète

Aldo
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 985
Date d'inscription : 26/09/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Jeu 1 Jan 2015 - 23:41

bon je fais une pause ... ici pour ce soir sur ce fil

à partir du quatrième axiome on va construire les entiers naturels 0,1,...

au cinquième axiome on parlera juste un peu de l'algèbre de Boole

et au sixième axiome on abordera "le plus petit" des infinis actuel celui du cardinal de  l'ensemble des entiers naturels

car il en existe d'autres encore "plus grands" on les appelle les ensembles infinis non dénombrables

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Dim 4 Jan 2015 - 8:28

bon je termine  
pour parler complètement de l'algebre de Boole sur ce fil il faudrait continuer car il manque de tres nombreux concepts
ici je ne fait que survoler cette notion afin de repondre à la question de Aldo
qu'est-ce qu'un infini actuel
à la fin de ce post j'écris en vert toute les notations et j'ai rajouté les dernières

quatrième axiome:axiome de l'union
Si A et B sont des ensembles, alors A "UNION" B ={x | (x "in" A)+(x "in" B)} existe
cet opérateur "UNION" est associatif de sorte que
( A "UNION" B)  "UNION" C =  A "UNION" (B  "UNION" C )
et on peut noter
( A "UNION" B)  "UNION" C =  A "UNION" B  "UNION" C
de plus il est commutatif de sorte que
A "UNION" B=B  "UNION" A

concept de l'intersection
on note A "INTER" B={ x |  (x "in" A).(x "in" B)}
l'opérateur "INTER" est associatif et commutatif
concept d'entier naturel
On construit tout entier naturel en construisant un ensemble fini dont le cardinal désigne cet entier

par le deuxième axiome on a vu le concept d'ensemble vide Ø ainsi Card(Ø)=0
par le troisième axiome on peut construire l'ensemble {Ø} ainsi Card ({Ø})=1
par le troisième axiome on peut construire l'ensemble {Ø,{Ø}} ainsi Card ({Ø,{Ø}})=2

par le troisième axiome on construit les ensembles {Ø},{{Ø}},{{Ø,{Ø}}}
par le quatrième axiome on construit l'ensemble {Ø} "UNION" {{Ø}} "UNION" {{Ø,{Ø}}}={Ø,{Ø},{Ø,{Ø}}}
ainsi  Card ({Ø,{Ø},{Ø,{Ø}}})=3
on poursuit en utilisant le troisième axiome en construisant les ensembles
{Ø},{{Ø}},{{Ø,{Ø}}},{{Ø,{Ø},{Ø,{Ø}}}} et on utilise le quatrième axiome pour obtenir l'ensemble de cardinal 4

et ainsi de suite...

cinquième axiome:axiome de puissance

pour tout ensemble A il existe un ensemble noté P(A), qui possède pour éléments tous les sous ensembles de A
autrement dit P(A)={X | X "inc" A   }
pour un ensemble A de cardinal n donc pour Card(A)=n alors par recurrence on démontre que Card (P(A))=2^n
par exemple
pour A=Ø donc Card (A)=0 alors P(A)={Ø} et donc Card (P(A))=1
pour A={a_1} alors  P(A)={Ø,{a_1}} et donc Card (P(A))=2
pour A={a_1,a_2} alors  P(A)={Ø,{a_1},{a_2},{a_1,a_2}} et donc Card (P(A))=4
pour A={a_1,a_2,a_3} alors  P(A)={Ø,{a_1},{a_2},{a_3},{a_1,a_2},{a_1,a_3},{a_2,a_3},A} et donc Card (P(A))=8
et ainsi de suite par récurrence

concept d'algebre
Soit X un ensemble et soit P(X) l'ensemble des ses parties
alors un sous ensemble K de P(X)est appelé une algebre (ou algebre de parties de X) si on verifie
Ø "in" K
A "in" K => X\A "in" K*a,B "in" K => A "UNION" B "in" K

notion superficielle d'algebre de Boole
on entre pas dans les détail ici car il manque de très nombreux concepts
une algebre de Boole se definie dans P(E) pour tout e non vide
l'élément 0 de cet algebre correspond à l'element Ø de  P(E)
l'élément 1 de cet algebre correspond à l'element E de  P(E)
la loi +  de cet algebre correspond à la loi "UNION"
la loi .  de cet algebre correspond à la loi "INTER"
la bijection \x correspond à l'opération E\x qui donne le complémentaire de x dans E

sixième axiome:axiome de l'infini
si X est un ensemble alors on définit X^+ le successeur de X comme étant X "UNION" {X}
ceci reste possible par le troisième et quatrième axiome
et par eux on a construit les entiers naturels

l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0 est un infini actuel


les sept symboles suivants sont des connecteurs logiques en logique binaire d'ordre zéro(je m'explique ici sur cette terminologie)  
<=> qui signifie le symbole d'équivalence logique
=> qui signifie le symbole de l'implication logique
. qui signifie le symbole du "AND" en logique
+ qui signifie le symbole du "OR" en logique
++ qui signifie le symbole du "lor" ou "XOR" en logique dit "OR" exclusif
T qui signifie le symbole du connecteur donnant toujours un résultat vrai
┴ qui signifie le symbole du connecteur donnant toujours un résultat faux

par ailleurs on considère aussi le symbole :
¬ qui signifie le symbole de la négation d'une proposition

 en logique binaire d'ordre zéro on considère toute proposition P est une déclaration possédant une valeur de vérité :
soit VRAI, soit FAUSSE
pour une proposition P on notera v(P) sa valeur de vérité
si P est Vrai on notera v(P)=1
si P est fausse on notera v(P)=0

 ¬ qui signifie le symbole de la négation d'une proposition
si P est Vrai alors dans ce cas ¬ P est une proposition fausse
en fait ¬ P=Q ici P et Q sont des propositions et si P est Vrai alors dans ce cas Q est une proposition fausse car ici ¬P=Q

de même  si P est Fausse alors dans ce cas ¬ P est une proposition vraie

 calcul des proposition en logique binaire d'ordre zéro
P et Q sont des propositions alors :
P <=> Q = R est aussi une proposition qui est toujours vraie si et seulement si P et Q possèdent la même valeur de vérité
P => Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P est vrai tandis que Q est fausse
P . Q = R est aussi une proposition qui est toujours fausse sauf si uniquement P et Q sont vraies
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux  
P ++ Q = R est aussi une proposition qui est toujours vraie sauf si uniquement  P et Q possèdent la même valeur de vérité  
P T Q = R est aussi une proposition qui est toujours vraie quelques soient P et Q
P ┴ Q = R est aussi une proposition qui est toujours fausse quelques soient P et Q

a "appartiens à" A et on note a "in" A de l'anglais

la non appartenance notée  a "notin" A

le quantificateur "exists" signifie : "il existe"

la non existence notée "nexists"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

:= ce symbole dit que ce qui s'y trouve à gauche est defini par ce qui s'y trouve à droite
un peu comme pour u n dictionnaire ou pour un mot
maison := définition du mot maison

F "inc" E et qui signifie que F est inclus dans E
la non inclusion notée F "ninc" E


égalité de deux ensembles A=B
A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

la non égalité de deux ensembles A "neq" B

le complémentaire de F dans E et noté E\F selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

de sorte que si F "ninc" E alors "nexists" X tel que X= {x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

notation Ø pour désigner l'ensemble vide

l'union A "UNION" B ={x | (x "in" A)+(x "in" B)}

l'intersection A "INTER" B={ x |  (x "in" A).(x "in" B)} 

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Dim 4 Jan 2015 - 8:55

Aldo voilà c'est fini!

pour la réponse à la question c'est quoi un infini actuel en guise de dernier mot sur ce fil

en ce qui concerne les infinis plus grands il faudrait ouvrir un autre fil car il manque encore de nombreux concepts avant d'aborder la question

ceci dit cela ne me dérange pas d'ouvrir un autre fil traitant de cela cependant il me faudrait quelques semaines pour cela
ça serait différent avec un papier/collé ou en quelques secondes c'est faisable

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par Aldo le Dim 4 Jan 2015 - 16:17

Laisse-moi deviner... tu es un prototype d'ordinateur que ses concepteurs mettent à l'essai sur différents forums pour voir s'il est au point pour se faire passer pour humain ?
(si tel était le cas, je reformulerai la question un jour de manière plus rusée pour essayer d'en avoir le cœur net)

_________________
Jimi Hendrix is God, et Deleuze est son prophète

Aldo
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 985
Date d'inscription : 26/09/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Dim 4 Jan 2015 - 23:06

cadeau pour toi Aldo ...

la réponse magnifique de Espinoza dans cette vidéo!
la mort magnifique de sa fille
et toute la folie de Brenna pour comprendre l'humain
la colère de Brenna c'est typique!
https://www.youtube.com/watch?v=IDlQwUEyv2w

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par saphiraméthyste le Lun 5 Jan 2015 - 2:22

je parle évidemment de la colère de Brenno là à 1h18 min du lien vidéo  
https://www.youtube.com/watch?v=IDlQwUEyv2w
et pourquoi ?
pensez vous sérieusement que cette colère soit gratuite?
pensez vous que cette colère me soit étrangère comme venant d'une autre planète?
pensez vous que cette colère soit filiale comme si je perdrai un enfant?
non. je ne connais pas cela, je ne suis pas fait ainsi ,je ne connais strictement rien à ces choses
mais cette colère oui, je la connais , c'est une colère non matérialiste ni même filiale
c'est un peu comme si tout d'un coup tous mes écrits en maths disparaissait
certes je me débrouillerai même si je ne peux pas me rappeler de tous mes "bidules" de mémoire faits nuits après nuits, jours après jours :
je dispose d'une méthode et celle ci est mnémotechnique (et rentrerai ma colère et la garderai pour moi même si j'en parlerai , je ne ferai que en parler)
bien que je doute de pouvoir me rappeler de cela http://www.ilemaths.net/forum-sujet-624503.html
mais je me débrouillerai en me maitrisant
ceci dit oui cette colère, oui je la connais et elle est belle! très belle même
je ne la nierai jamais

il y a de cela quartorze années j'ai passé six mois en vivant dans la rue et seul, loin de mes papiers écrits par moi même , j'ai beaucoup d'expérience et je serai encore plus capable de le revivre à présent car je suis méthodique mais ... expérience ou pas
je ne la nierai jamais

saphiraméthyste
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 108
Date d'inscription : 29/11/2014

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par Aldo le Mar 6 Jan 2015 - 2:09

(ah, j'ai pas visionné le lien)
saphiraméthyste a écrit:ceci dit oui cette colère, oui je la connais et elle est belle! très belle même
je ne la nierai jamais
Bien sûr...

_________________
Jimi Hendrix is God, et Deleuze est son prophète

Aldo
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 985
Date d'inscription : 26/09/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Re: L'horloge du républicain

Message par Axiome le Sam 10 Jan 2015 - 23:41

Je vous fais remarquer que l’horloge du forum est complètement faussée ! Comme dirais un camarade : « Si vous allez aussi vite que je vous emmerde, pour une fois vous serez en avance sur l'horaire ! »



Cela paraît rien mais c’est important l’horaire !

Axiome
Digressi(f/ve)
Digressi(f/ve)

Nombre de messages : 89
Date d'inscription : 05/06/2013

Voir le profil de l'utilisateur

Revenir en haut Aller en bas

Page 3 sur 3 Précédent  1, 2, 3

Voir le sujet précédent Voir le sujet suivant Revenir en haut

- Sujets similaires

 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum